
Functional specifications

Christophe Delord ~ http://fun.cdsoft.fr

Sunday 28 February 2016

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr
http://fun.cdsoft.fr


What’s wrong today?

The main problems in the everyday life of IT engineers are often the
software specifications. The purpose of CDSoft FUN method is
quite simple:

Specifications shall be: but also:

simple
practical, convenient
usable

formal
unambiguous
verifiable
safe

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr
http://fun.cdsoft.fr


Who am I?

I’m a software engineer. I’ve been working in the IT and aircraft
industry for 17 years. . . writing softwares but not always in a clean
and proper way:

deadlines incompatible with requirements
silly hypothesis to reduce costs
and an unefficient philosophy: do it well at the first time, you’ll
have no second chance to make it better or to try alternative
solutions!

So I have accumulated some ideas to make it differently.
I also have a passion for free software and sharing good ideas.
More about me: http://cdsoft.fr

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://cdsoft.fr
http://fun.cdsoft.fr


Why this book?

This book is an opportunity to:

have time to formalize my ideas
have fun with things like Arduino, Raspberry Pi, . . .
prove that writing softwares doesn’t necessarily take
complicated process, methods and tools

So I’ll be proud and happy if you decide to help me and fund a little
bit this adventure.
I hope I can work part time and have more time for this project.
In return you will get a digital version of the book.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


FUN answers

My point of view is that most of the software specifications - even
for critical systems - are written:

in ambiguous natural languages
in close proprietary inexploitable formats
with unsafe proprietary office suites

Let’s see what’s wrong with this and what can be done to improve
this situation. . .

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Problem 1: ambiguous natural language

Natural language is nice

to explain or comment ideas,
to communicate in every day life. . .

But critical (or not) softwares must be described unambiguously.
Ambiguities lead to multiple and sometime inconsistent
interpretations in practice.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Problem 1: ambiguous natural language

Tools may not be good at understanding natural languages.
Sometimes people extract information by hand to duplicate it
in other documents (design, code, . . . ). And humans are not
good at copying/interpreting/pasting. . .
Such projects have a bunch of different and inconsistent
documents and the implementation may differ from the original
specification.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Problem 2: Close proprietary formats

You can not master a close proprietary format:

The format may change at every new versions.
Old versions and tools may not be supported.
You don’t have the source code so old versions will be lost.

Proprietary formats are definitely the worst choice to write
documents, especially if documents must be kept for a long time
(e.g. 80 years in the aviation industry).

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Problem 3: Inexploitable formats

Some formats - proprietary or not - are not suitable, especially office
suite documents:

Very often people don’t understand the difference between a
text editor and a word processor.
A word processor may be nice to write a letter to your grand
mother.
But it also saves a lot of insane things in the document to
describe the layout which makes it impossible for tools to
exploit the document.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Problem 4: Unsafe office suites

You don’t know what some office suites do.
Do you think that entrusting confidential documents to a
country that may spy your activities is a good idea?
A lot of companies give their documents to some famous
proprietary office suites, using computers connected to the
internet. . . No comment.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Proposal 1: Formal language

Natural language is still used of course but only to comment
and explain a formal model!
A functional language providing essential features:

strong and static type systems,
type inference,
clean mathematical semantics,
determinism.

Such languages are deterministically executable and also
unambiguous.
The specification can be reused for subsequent activities
(design, code, test, . . . ) thanks to a clean unambiguous syntax.
More tools and less human bugs is not a bad thing.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Proposal 2: Open formats

Open and simple formats:
All documents are written in plain text format (generally UTF-8
text files).
This format is so basic that it must be supported for a long long
time.

These formats and the associated tools are generally free (as in
freedom) and free (of charge).

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Proposal 3: Open formats (again)

Markdown is a simple document format that any good text
editor can read and modify.
There are tools to convert these formats to HTML, PDF or
even some office suite formats but the source document format
is, and will always be, exploitable by humans and tools.
These formats separate clearly the content and the form. Just
defines the form once for all and reuse it on every project. And
let your engineers focus on the content!

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Proposal 4: Safe tools

To write text, you need a text editor:

Every body has its favorite text editor.
the FUN method won’t force anybody to use a specific editor.
Just use the one you feel better with and that is safe enough
for your activity.
Every body will then be more productive.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Executable specifications

The advantage to writing functional specifications is that they can
be executable. It means that they can be executed to:

debug the model
test and validate the model

the logic of the model can be checked before the real hardware
target is ready

animate a model and show a mock-up to you customer

Some kind of poor man formal method. . .

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Executable test plans

The concept of executable specifications can be applied to tests!
Speaking about executable test plans is weird because the rationale
of a test is to be executed to check something. . .
It should not be necessary to explicitly say “executable test plans”.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Executable test plans

“Executable test plan” is not weird. It should be natural to
everyone. . . But people often:

write a test plan
implement the tests
execute the tests
write a test report
and make a lot of copy/paste mistakes because of such a long
and boring process!

I will show in this book how easy it can be to achieve the same goal
with functional test plans that are self-executable and that generate
test reports themselves.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap

The next slides describe a provisional roadmap or plan for the book.
The main goal is to show how Haskell (and functional programming
in general) can be used as a multilevel formalization language:

modeling / specification
simulation
coding
testing

And can be applied to different domains:

real time embedded softwares
generic purpose data processors (code generator, . . . )

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Functional programming

The book will start with a short introduction to functional
programming. This introduction will be light because there are
already a lot of tutorials and documentation on this topic.
The book will focus on the following points and their advantages:

pure functional programming: why having no side effect is a
good thing?
strong static type system: how a type system can be used as a
sort of formal system to describe a software?

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Some applications: time formalization in real
time systems (1/2)

Reactive real time systems are often state machines. Their main
activity is to modify their current state according to external stimuli.
Modelling such systems in a pure functional language (i.e. without
any side effect) may seem impossible but we will see how to model
time and its consequences on a reactive system.
This exemple will show the advantages of a pure functional language
to describe states as well as to reason about their evolution in time.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Some applications: time formalization in real
time systems (2/2)

Applications with real time models:

music generator from data measured by movement sensors
formalism inspired by SCADE or Matlab Simulink and real time
embedded softwares

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Some applications: Arduino robot

Another model of reactive system will lead to a concrete realization:
an Arduino robot able to sense its environment and react to some
stimuli.

formal specification in Haskell: reactions according to sensors
obstacle avoidance
moving toward a target

simulation of the robot in its environment (also simulated)
actual coding using an Arduino platform

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Modeling and Simulation

Modelling of a complete system: classical example of traffic lights
and traffic in a road network.

modelling of a traffic light (state machine, synchronization with
its environment, . . . )
modelling of a road-user (behaviour, peak hours, commuting,
MTBF of the vehicules, . . . )
modelling of a road (maximal speed, . . . )
global model (road network, users)
graphic interface to visualize the simulation, interact, inject
failures, . . .

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Some applications: a well specified and tested
calculator

This project is a rewriting of a calculator previously written in Lua
by CDSoft. The idea is to recode this calculator in Haskell in a
cleaner way:

formal specification in Haskell:
strong typing: the type verification is some kind of formal
method
extreme usage of the compiler to detect more bugs and dead
code

complete unit tests:
non regression tests helps for future evolutions
code coverage

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


Roadmap / Some applications: ARINC 665 load generator

The ARINC 665 standard defines a loadable data format. This
standard is widely used in aeronautics.
The generation of such loads is highly critical since they contain
executables and data for embedded computers on aircrafts.
A functional specification can:

reduce the distance between requirements and implementation
(easier traceability)
be tested in a simpler and safer way

The key idea is to describe requirements along with their properties
to let the implementation be testable directly from the formalism of
the requirements.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


For who?

Whom is this book for?
This method has neither the power of formal methods like Event-B
or tools such as Matlab Simulink or SCADE (yet?). Its advantages
are:

Pretty easy to learn
Power of a strong and static type system
Expressivity of a functional language
Based on free tools and languages, so subject to simple and
cheap evolutions
Multiplatform, not forced to any IDE, compatible with any
good version control system (git, . . . )

It is therefore aimed at anyone looking for a nice combination of
power, efficiency, simplicity and cost.

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr


And now. . .

Your help is appreciated. . .

FUN is still a project.
I need time to write the book and some examples

I think that crowdfunding is a solution:

to get more time
to finish faster

Follow me

on Twitter to be informed on this project:
https://twitter.com/CDSoftX
on my web site: http://fun.cdsoft.fr

Christophe Delord ~ http://fun.cdsoft.fr Functional specifications

http://fun.cdsoft.fr
https://twitter.com/CDSoftX
http://fun.cdsoft.fr
http://fun.cdsoft.fr

